8. ОСНОВЫ МЕДИЦИНСКОЙ СТАТИСТИКИ

Статистика – наука, изучающая количественную сторону массовых явлений в неразрывной связи с их качественной стороной. Официальный статистический учет государственной статистики Российской В Федерации регламентируются Федеральным законом от 29.11.2007 №282-ФЗ «Об официальном статистическом учете И системе государственной статистики в Российской Федерации» (далее – Федеральный закон).

Целью Федерального закона является создание правовых единой основ ДЛЯ реализации государственной ПОЛИТИКИ В сфере официального статистического учета, направленной на обеспечение информационных потребностей государства и общества достоверной, обоснованной полной, научно предоставляемой своевременно официальной статистической информации 0 социальных, экономических, демографических, экологических общественных Российской процессах В других Федерации.

Предметом регулирования Федерального закона являются общественные отношения, возникающие при осуществлении официального статистического учета.

Действие Федерального закона распространяется на респондентов, субъекты официального статистического учета и пользователей официальной статистической информацией.

ROSSTAT.GOV.RU Анализ статистических данных в сфере здравоохранения осуществляется Федеральной службой государственной статистики на основе первичных статистических данных.

Одной из отраслей статистики является медицинская статистика, которая регулируется Федеральным законом от 21.11.20211 №323-ФЗ «Об основах охраны здоровья граждан в Российской Федерации».

Федеральный закон от 21.11.2011 №323-Ф3, статья 97

Медицинская статистика – отрасль статистики, включающая в себя статистические данные о (об):

- медицине, гигиене, здоровье населения;
- использовании ресурсов здравоохранения;
- деятельности медицинских организаций.

ОСНОВЫ МЕДИЦИНСКОЙ СТАТИСТИКИ

Медицинская статистика – незаменимый инструмент в здравоохранении, который играет ключевую роль в различных областях: от проведения лабораторных и клинических исследований до определения эффективности лечения.

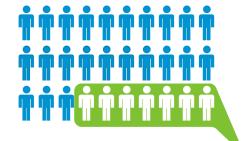
В научно-практической деятельности врача часто возникает необходимость проведения статистического исследования в целях получения данных, необходимых для апробации новых методик по профилактике, диагностике и

лечению заболеваний, реабилитации, а также выработке мер по совершенствованию медицинской деятельности.

Объект исследования – совокупность явлений или предметов, социально-экономическая проблема здравоохранения.

Чаще всего объектом исследования выступают:

социальная	• врачи;
группа	• пациенты;
	• средний медицинский персонал;
	• студенты и другие.
документы	• нормативные правовые акты;
	• статистические данные и другие.


Предмет исследования – характеристики, свойства и стороны объекта исследования.

Единица наблюдения – составной элемент статистической совокупности, являющийся носителем изучаемых (учетных) признаков.

Статистическая совокупность (объект исследования) – группа, состоящая из относительно однородных элементов (единиц наблюдения), взятых в единстве времени и пространства, обладающих признаками сходства и различия (учетные признаки).

Генеральная совокупность – совокупность всех единиц, которые представляют изучаемое явление (состоит из всех единиц наблюдения).

Выборочная совокупность:

- представлена частью генеральной совокупности;
- позволяет переносить выявленные закономерности на генеральную совокупность и обеспечивает репрезентативность выборки;
- позволяет экономить ресурсы для получения достоверных результатов.

Учетные признаки:

Количественные

- возраст;
- poct;
- температура;
- число заболеваний;
- количество лейкоцитов и так далее.

Качественные

Альтернативные:

- пол (мужской и женский);
- население (городское и сельское) и так далее.

Атрибутивные:

- профессии;
- нозологические формы и так далее.

Порядковые (можно представить в числовом выражении):

- уровень образования;
- уровень квалификации и так далее.

Статистическое наблюдение – системно организованный процесс получения (сбора) массовых данных для последующей работы с ними: обработки, анализа, публикации.

Для обеспечения репрезентативности рассчитывается необходимое число наблюдений. Расчет объема выборки (n) зависит от наличия или отсутствия данных об объеме генеральной совокупности (N) и рассчитывается по специальным формулам, которые доступны в программах для статистической обработки данных.

Статистическая совокупность может быть раскрыта (изучена) с помощью показателей, отражающих определенное свойство совокупности. Установление общих свойств совокупности достигается с помощью расчета статистических показателей и их анализа.

ОСНОВНЫЕ СВОЙСТВА СТАТИСТИЧЕСКОЙ СОВОКУПНОСТИ

- Характеризуются распределением признаков и могут быть выражены абсолютными числами или показателями:
 - интенсивными;
 - экстенсивными;
 - соотношения;
 - динамического ряда.
- Определяется средним уровнем признаков и характеризуется различными средними величинами:
 - модой;
 - медианой;

- средней арифметической.
- Определяются разнообразием (вариабельностью) признаков и характеризуются такими статистическими критериями, как:
 - среднее квадратическое отклонение;
 - коэффициент вариации и другие.
- Характеризуются репрезентативностью и включают определение:
 - ошибок средних и относительных величин;
 - доверительных границ средних или относительных величин;
 - достоверность разности средних или относительных величин по соответствующим критериям.
- Определяются взаимосвязью между признаками (корреляцией) и оцениваются с помощью коэффициентов корреляции.

ПЕРВОЕ СВОЙСТВО СТАТИСТИЧЕСКОЙ СОВОКУПНОСТИ

Для характеристики статистической совокупности используются:

- абсолютные величины;
- относительные величины;
- показатели динамического ряда.

Абсолютные величины

отображают численную величину явления:

- измеряются в конкретных единицах;
- могут быть положительными и отрицательными;
- являются именованными.

Например, численность населения, число медицинских организаций, число заболеваний на территории города без учета численности населения.

Относительные величины в отличие от абсолютных величин учитывают общий размер совокупности и используются для корректного сравнения данных.

К ним относят:

- экстенсивные показатели;
- интенсивные показатели;
- показатели соотношения;
- показатели наглядности.

+-×÷

Экстенсивные показатели

характеризуют распределение признака, внутреннюю структуру явления, определяют удельный вес или долю изучаемого явления (части явления) по отношению к целому.

Например, структура заболеваемости, доля заболевших среди вакцинированных, удельный вес умерших среди прооперированных.

Интенсивные показатели

характеризуют частоту (интенсивность, уровень, распространенность) явления в изучаемой среде, в которой оно происходит и с которой оно (явление) непосредственно связано.

Например, демографические показатели (рождаемость, смертность), показатели заболеваемости (первичная заболеваемость, общая заболеваемость). Как правило, большинство интенсивных показателей рассчитывают на 1000 (в %), или на 10 000, 100 000).

Интенсивный показатель =	явление	x 1000
	среда	- X 1000

Показатели соотношения

применяются в том случае, когда сравниваются две, не связанные между собой статистические совокупности, но сопоставимые логически и по содержанию.

В практической деятельности показатель соотношения применяется для характеристики обеспеченности населения медицинской помощью.

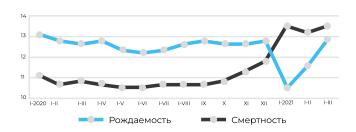
Например, число врачей, среднего медицинского персонала, больничных коек к численности населения и другие.

Показатели динамического ряда совокупность однородных статистических величин, показывающих изменение какого-либо явления (признака) во времени.

Классификация динамических рядов:

• По способу построения:

Простые	представлены абсолютными величинами
Сложные или	состоят из средних или относительных величин
производные	состоят из средних или относительных величин


• По времени:

Моментные	показывают уровень явления на конкретный момент времени (на конец года, месяца и так далее).
Интервальные	показывают уровень явления за определенный интервал времени (за год, месяц и так далее).

Числа, из которых составляется динамический ряд, могут быть представлены абсолютными, средними и относительными величинами.

Показатели динамического ряда характеризуют изменение показателей во времени (динамике) и позволяют сделать прогноз на перспективу:

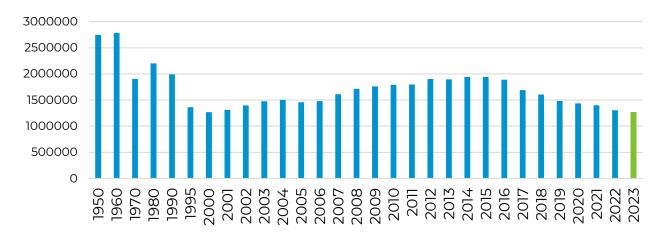
- абсолютного прироста;
- наглядности;
- роста;
- прироста.

Абсолютный прирост – разность между последующим и предыдущим уровнем.

Показывает на сколько изменился последующий уровень, по сравнению с предыдущим, в величине уровней.

Темп роста – отношение каждого последующего уровня к предыдущему, выраженного в %.

Показывает последующий уровень в %, по сравнению с предыдущим.


Темп прироста (убыли) – отношение абсолютного прироста к предыдущему уровню, выраженного в %.

Показывает на сколько % изменился последующий уровень, по сравнению с предыдущим.

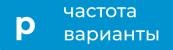
Показатели наглядности – отношение каждого последующего уровня к начальному (одному) уровню, принятому за 100%.

Показывает на сколько % изменился каждый последующий уровень, по сравнению с начальным.

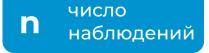
Динамика числа родившихся в Российской Федерации в 1950-2023 годах:

ВТОРОЕ СВОЙСТВО СТАТИСТИЧЕСКОЙ СОВОКУПНОСТИ

Средние величины используется как обобщающая характеристика статистической совокупности. Для вычисления средних величин используются вариационные ряды.



Вариационный ряд – ряд вариант, расположенных в ранговом порядке (по степени возрастания или убывания) и частоты, с которой эта варианта встречается.


Обозначения, используемые в вариационном ряду:

- числовое выражение признака.

показывает сколько раз данная варианта встречается в вариационном ряду.

сумма всех частот вариационного ряда определяет число наблюдений, n = Σp.

В простом вариационном ряду каждая варианта встречается только 1 раз, во взвешенном – с различной частотой (несколько раз).

Виды средних величин:

Мода

Мо

– средняя величина, которая соответствует варианте, наиболее часто встречающейся в вариационном ряду.

Медиана

Me

- средняя величина, соответствующая варианте, которая делит вариационный ряд пополам. В нечетном вариационном ряду находится в середине, в четном вариационном ряду вычисляется как полусумма двух средних вариант.

Средняя арифметическая, взвешенная

М

- обобщенная характеристика среднего уровня изучаемого признака однородной статистической совокупности в конкретных условиях места и времени.

Мода, медиана, средняя арифметическая могут совпадать или не совпадать в числовом выражении.

ТРЕТЬЕ СВОЙСТВО СТАТИСТИЧЕСКОЙ СОВОКУПНОСТИ

К статистическим критериям, характеризующим статистическую совокупность, относят, в частности, **среднее** квадратическое отклонение (δ).

Роль среднего квадратического отклонения состоит в том, что по величине δ можно:

- определить структуру вариационного ряда;
- охарактеризовать степень однородности вариационного ряда;
- судить о типичности средней величины;
- оценить достоверность (репрезентативность) результатов исследования.

ЧЕТВЕРТОЕ СВОЙСТВО СТАТИСТИЧЕСКОЙ СОВОКУПНОСТИ

Репрезентативность выборки может быть достигнута специальными методами отбора выборочной совокупности.

Репрезентативность (достоверность) выборочной совокупности означает представительность в ней всех учитываемых признаков, характерных для генеральной совокупности. Результаты, полученные в выборочной

совокупности, могут быть перенесены на генеральную совокупность.

Статистические критерии, характеризующие репрезентативность статистической совокупности:

- ошибки средних и относительных величин;
- доверительные границы средних и относительных величин:
- достоверность различий средних и относительных величин по соответствующим критериям.

Рассчитываются по специальным формулам, которые доступны в программах для статистической обработки данных.

Величина ошибки средних и относительных величин прямо пропорциональна степени разнообразия признака и обратно пропорциональна числу наблюдений в статистической совокупности.

Следовательно, чем менее разнообразен признак и больше число наблюдений в статистической совокупности, тем меньше величина ошибки и более достоверен результат исследования.

Доверительные границы – интервал колеблемости средней или относительной величины, выход за пределы которого имеет незначительную вероятность (носит случайный характер).

Величина **доверительного коэффициента t** определяется величиной доверительной вероятности.

Критерии достоверности:

Доверительный коэффициент t	Доверительн вероятность		Уровень значимості	, p
1	68,3%	0,683	31,7%	0,317
2	95% (95,5%)	0,95 (0,955)	5% (4,5%)	0,05 (0,045)
2,5	98,8%	0,988	1,2%	0,012
2,6	99%	0,99	1%	0,01
3	99,7%	0,997	0,3%	0,003
3,3	99,9%	0,999	0,1%	0,001
3,5	99,95%	0,9995	0,05%	0,0005
4	99,99%	0,9999	0,01%	0,0001

Достаточной доверительной вероятностью (достоверностью) для большинства медико-статистических исследований является Р=95% (Р=0,95) и уровень значимости менее или равен 5% (р≤5%) или 0,05 (р≤0,05).

При большом числе наблюдений (n≥30) и доверительной вероятности P=95% величина доверительного коэффициента соответствует t=2 (при доверительной вероятности P=99% величина доверительного коэффициента соответствует t=3).

При малом числе наблюдений (n<30) величина t несколько больше указанных выше значений и ее необходимо определять по таблице Стьюдента.

Средние величины и доверительный интервал лежат в основе определения достоверных границ средних величин, которые широко используются в процессе профессиональной деятельности врача для оценки данных физиологических и лабораторных исследований, определения нормы различных показателей и так далее.

Метод оценки достоверности разности средних относительных величин применяется в том случае, когда необходимо определить различие независимых В ДВУХ выборочных совокупностях при сравнении результатов, полученных в экспериментальной (опытной) и контрольной группах.

Разность средних арифметических величин или относительных показателей:

случайная или статистически недоказанная;

достоверная, то есть существенная и неслучайная; при t=2 надежность вывода будет 95% (то есть различия в полученных результатах достигли статистической достоверности).

ПЯТОЕ СВОЙСТВО СТАТИСТИЧЕСКОЙ СОВОКУПНОСТИ

Взаимосвязь между признаками – еще одно свойство статистической совокупности.

Формы взаимосвязи между признаками:

Функциональная

характеризуется тем, что каждому значению одного признака соответствует строго определенное значение другого признака.

Изменение величины одного признака вызывает определенные изменения величины другого признака.

Например,

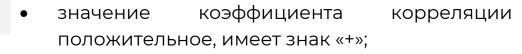
- пройденное расстояние функционально зависит от скорости и времени движения;
- площадь круга функционально зависит от радиуса;
- вес объекта функционально зависит от силы гравитации и так далее.

Корреляционная

характеризуется тем, что каждому значению одного признака может соответствовать несколько значений другого признака.

Связь между явлениями проявляется не в каждом отдельном случае, а при массовом сопоставлении рассматриваемых признаков.

Например,


- каждому значению роста может соответствовать несколько значений массы тела;
- при одинаковой дозе введенного лекарственного вещества наблюдается разный клинический эффект;
- длительность течения одного и того же заболевания у разных людей отличается и так далее.

Для вычисления коэффициента корреляции используются различные методы. Анализ коэффициента корреляции включает оценку:

- направления связи;
- силы связи;
- достоверности.

Направления корреляционной связи:

• с увеличением значений одного признака, увеличиваются значения другого признака, или с уменьшением одного признака уменьшается другой признак.

Например, при увеличении роста наблюдается увеличение массы тела; при снижении температуры тела наблюдается снижение частоты сердечных сокращений и так далее.

Обратная

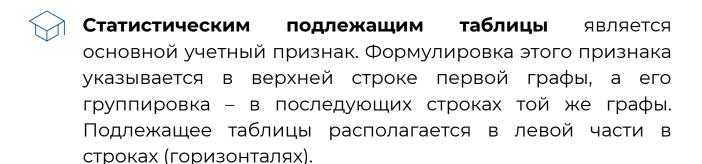
- значение коэффициента корреляции отрицательное, имеет знак «-»;
- с увеличением значения одного признака наблюдается уменьшение значения другого признака и наоборот.

Например, при увеличении повозрастных показателей смертности снижается показатель средней продолжительности предстоящей жизни; при увеличении охвата профилактическими прививками уменьшается уровень инфекционной заболеваемости и так далее.

Абсолютная величина коэффициента свидетельствует о силе корреляционной связи между изучаемыми признаками.

Оценка корреляционной связи:

Сила корреляционной связи	Положительная (прямая) корреляционная связь	Отрицательная (обратная) корреляционная связь
Малая (низкая, слабая)	от 0 до +0,29	от 0 до -0,29
Средняя	от +0,3 до +0,69	от -0,3 до -0,69
Большая (высокая, сильн	ная) от +0,7 до +1,0	от -0,7 до -1,0


Если абсолютное значение коэффициента корреляции составляет 0, то это значит, что связь между изучаемыми признаками или явлениями отсутствует, а если коэффициент корреляции равен 1,0, то это свидетельствует о наличии полной корреляционной или функциональной связи между изучаемыми признаками или явлениями.

Коэффициент корреляции считается достоверным, если его абсолютная величина в три и более раз превышает величину своей ошибки.

НАГЛЯДНОЕ ПРЕДСТАВЛЕНИЕ СТАТИСТИЧЕСКИХ ДАННЫХ

Статистическая таблица – форма наиболее краткого и рационального представления цифровых данных. Смысловыми элементами таблицы являются статистическое подлежащее и статистическое сказуемое.

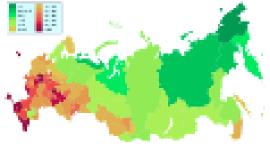
Статистическим сказуемым таблицы (одним или несколькими) являются учетные признаки, которые дополняют и раскрывают подлежащее, позволяют дать более глубокую и полную характеристику изучаемой совокупности и располагаются в столбцах (вертикалях).

Виды статистических таблиц:

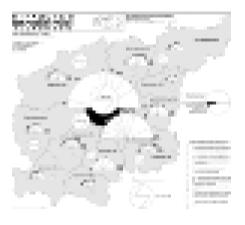
• простая (одно подлежащее и одно сказуемое)

Заголовок подлежащего	Заголовок сказуемого
содержание подлежащего	содержание сказуемого
содержание подлежащего	содержание сказуемого

• сложная групповая (одно подлежащее и связанные сказуемые)

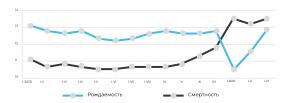

Заголовок подлежащего	Заголовок сказуемого	Заголовок сказуемого
содержание подлежащего	содержание сказуемого	содержание сказуемого
содержание подлежащего	содержание сказуемого	содержание сказуемого

• сложная комбинационная (одно подлежащее и несколько не связанных между собой сказуемых)

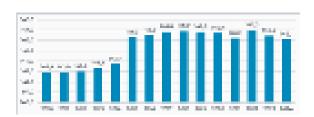

	Сказуемое разделяется на группы		
Заголовок подлежащего	Заголовок сказуемого 1	Заголовок сказуемого 2	
содержание подлежащего			
содержание подлежащего			

Графическое изображение статистических величин:

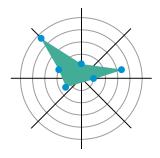
Картограммы



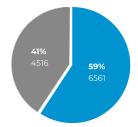
Картодиаграммы


Диаграммы:

• Линейная для интенсивного показателя, показателя соотношения, показателей динамического ряда.


• Столбиковая

для интенсивного показателя, показателя соотношения, показателей динамического ряда.


• Радиальная

для интенсивного показателя, показателя соотношения, показателей динамического ряда.

• Секторная

для экстенсивного показателя.

Клиническое, эпидемиологическое или медикоорганизационное исследование, начавшись с гипотезы и постановки цели, предполагает последовательность действий, которые можно разделить на 4 этапа:

Разработка программы и плана исследования:

- формулируется тема исследования;
- определяются цель, задачи и объект исследования;
- содержание всех этапов отражается в программе исследования;
- программа и план подчиняются общей цели исследования;
- разрабатывается анкета или специальная карта, в которой указаны учетные признаки, подлежащие изучению;

- составляются макеты статистических таблиц;
- определяется необходимое число наблюдений.
- 2 **Сбор материала** по составленной программе исследования, заполнение на каждую единицу исследования документа разработанной формы (анкеты).
- З Статистическая обработка собранного материала, графическое представление полученных данных:
 - группировка полученных данных;
 - заполнение макетов статистических таблиц;
 - статистическая обработка, интерпретация и логический анализ;
 - графическое представление полученных данных.
- **Анализ полученных данных**, выводы, предложения для практики:
 - интерпретация и анализ полученных данных;
 - характеристика объекта исследования;
 - сопоставление полученного результата с рабочей гипотезой;
 - сравнение результатов с данными ранее проведенных исследований;
 - внедрение полученных результатов;
 - составление рекомендаций, которые могут быть предложены для внедрения в практику.

Развитие новых технологий, таких как машинное обучение и искусственный интеллект, обеспечивает ускорение темпа обработки данных, в том числе «больших данных» с возможностью их оперативного анализа.

В ближайшем будущем медицинские информационные системы для врачей будут не только помогать документировать факты о пациенте, но и предсказывать возможное развитие заболеваний, помогать врачу подбирать персональные программы профилактики и реабилитации; эффективные методы диагностики и лечения.